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Conversion from Data-flow to Synchronous Execution

in Loop Programs

Janice E. Cuny

Lawrence Sn~yderT

Purdue University

The preparation of highly parallel programs is not yet a routine pro-

gramming activity. When we compare it to sequential programming

where there are numerous general problem solving techniques, extensive

* programming language and systcm support, and a large corpus of

* thoroughly analyzed and tested algorithms and data structures, parallel

programming is presently at a very primitive stage of development.

One difficulty of course, is synchronization - making sure that the

right processor processes the right data at the right time. The synchroni-

zation problem can apparently be simplified by use of a data-driven or

data-flow based execution mode. In this mode, each processor idles in a

busy-wait loop unitil data values have arrived from all of its input

sources; it then computes and writes results out to other processors.

Parallel programming is simplified because much of the synchronization

is accomplished implicitly by the underlying machine.

The data-flow execution mode does not eliminate synchronization as

a problem of parallel computation, it only eliminates it as a problem for

the programmer. The underlying hardware must still service the arrival
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of data (asynchronously), determine when sufficient data has arrived to

initiate processing, support queues for all of the input channels to hold

the arriving data, and implement a "queue is full" signalling mechanism

with the input data queues. These hardware facilities represent

significant overhead and arc incomnpatible with current efforts in the

* design of VLSI multiprocessors toward very simple processor structure.

In this paper, we consider the automatic conversion of data-flow pro-

* gramis into equivalent synchronous programs. Such conversions enable

programmers Lo program as though the underlying machine executed in

a data-flow mode, while allowing the hardware to execute synchronously.

We begin with a model of parallel computation in which we can express

both data-flow and synchronous computations. Within this model, we

dcflic a restricted class of programs and characterize the conditions

under which a conversion from data-flow to synchronous execution is pos-

sible. Finally, we present two algorithms for performing the conversion:

the first is more general but the second often produces better results.

Although our algorithms apply only to a subclass of all parallel programs,

it is sufficiently rich to encompass many of the recently developed paral-

lel and systolic programs.

The Model of Parallel Programs

The formalism that we use to develop our algorithms and prove their

correctness is quite spare. In order to connect it with conventional paral-

lei computation settings, we give an informal description of the situation

from which we have abstracted.

* t We postulate a parallel processor composed of m machines

M11Mp.... Mm which communicate with read and write operations. The
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machines, referred to as processing elements or PEs, are all of the same

type. Iti gcral, Ps will be sequcntial RAMs with small amounts of local

memory (and no global memory) but it is sufficient to let them be devices

capable of defining a regular set. This simplification is valid because we

are concerned here only with a PE's interprocess input/output behavior

and not its computational ability. We assume that the machines execute

with a common time step; on each step a PE can attempt to perform a

set of operations simultaneously. In synchronous mode, all operations will

execute the first time that they are attempted. In data-flow mode, writes

will execute as soon as they are attempted but, depending on the state,

reads may block. A blocked operation is retried on the next execution

step and a process does not proceed with a new set of operations until all

of its current operations have completed.

We model such systems as Interprocess Commutication (IC) Sys-

tems. An IC system is completely defined by a set of regular expressions,

Vi, V2 .... Vm, each describing the interprocess input/output behavior of a

single PE. The i-th regular expression describes the behavior of the i-th

machine. The algorithms developed in this paper work for Loop programs

in which all regular expressions are of the form a* where a is a sequence

of symbols from the alphabet. We define p to be a function on expres-

sions that removes the outermost Kleene star; p(a °) = a. The symbols in

our regular expressions denote sets of operations that are to be executed

simultaneously. The alphabet is the power set of Jrtmt Itc[m] I where r,

denotes a read from PE j, w denotes a write to PE Y and it takes the

place of any operation not involved in interprocess communication

t [m] denotes the act j1,2,3 .. 1.
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(including operations that transfer values to and from the external

ciivironmenL).t Figure 1(a) is an IC system representing the systolic

Processor 7: <'[rl ] id ,"

Processor 0: (frrj L] jW W3_1L IL]I Li -*

Processor 3: w2 N j] L ] r

Processor 4: ([ .- ]
l(a) IC system representing systolic processor

for band matrix - vector multiplication

1(b) Communication graph for the IC system of
Figure 1(a)

Figure 1.

processor for band matrix-vector multiplication with a bandwidth of four

[1]; only intcrprocess reads and writes appear in the model, all other

qraph for this system; each vertex represents a PE and a directed edge

from node i to node j represents a communication link over which the

i-th PE writes to the j-th PE and the j-th PE reads from the i-th PE.

We define the execution of an IC system terms of two sequences,

C,C,C.... and TO,T',T2 ..... Each element of the first sequence is an m-

vector which gives the program counter values for all PEs (a program

ortintvr value is the index of a set of operations). Each element of the

t Note that we use slandard set notation to represent both sets and the symbols
or our alphabet; the distinction will be clear from the surrounding context. In our
figures, we will use rectangular boxes Lo enclose sets rather than the usual brace
notation.

* - -
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second sequence is an mxm matrix of strings, giving the status of com-

munications in terms of a generic message X. The status of communica-

lions on the link from PE i to PE j is given by ttj: tj = X" means that

there have been n unanswered writes; t.j = (X-i)n means that there have

been n unanswered reads; and tij = A means that there are no outstand-

ing reads or writes (X represents the null string). The sequences together

describe the execution of a system; for all k>O, C' describes the set of

operations that will be attempted on the k-th execution step and 7*

describes the status of communications if all of those operations com-

plete.

To start the sequences, we define cj 1=1 for all ic[m] and tj=A for all

i,jc[m]; C1 shows all PEs executing their first set of operations and T

shows that there are no outstanding reads or writes. The remainder of

the sequence of Cs is defined to reflect the fact that a PE moves to a new

set of operations only if all operations in its previous set have completed:

Ic+ if UNBLOCKED (iV4(C k).TA

ckt otherwise

where the notation V(j) denotes the j-th symbol in some word generated

by the expression V I and UNJLOCKED(i,S,T) is true if the i-th PE can

execute all operations in set S when the status of communications is

described by T. "The exact form of UNBLOCKED depends on the mode of

excution, synchronous or data-flow, and is discussed below. The

remainder of the sequence of Ts is defined to reflect the execution of

t Note that for all loop programs, V(j) is a unique symbol. This notation will also
be used for processes that execute an initialization sequence before enterin9
their loop. These PEs are represented by regular expressions of the form #¢a
where a and f are sequences over the alphabet and, again, the j-th symbol in
unique.

.,-...... .....-- - - - .. ...
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read and write operations:

th+1=d.tj.b where

xL X ifWj E YVt(Ct ) (k=o vct+ * 4)
= A otherwise

and

X-' if rCj(Ct +' ) A (k=0o v c7' *
b = A otherwise

and X.X -' = A. We observe that our execution rules are more general and

more realistic than those used in many models because we do not insist

that all of the operations in a set execute simultaneously. Depending on

the definition of UNBLOCKED, it is possible, for example, to allow indepen-

dent reading and writing on different ports.

The execution of an IC system is parameterized by the predicate

UNBLOCKED. When the predicate is TRUE, the IC system is synchronous,

that is, all operations execute on every time step. A correct, synchro-

nous system should have the property that corresponding reads and

writes are simultaneous.t More precisely, if during synchronous execu-

tion, t.j=A, for all i, j and k, we say that the system is strongly coordi-

nated. When the predicate UNBLOCKED(iS, T) is

Vjc[m] (rics => tt.1cX')

the IC system is data flow, that is, read operations execute only when

values are present. A correct, data-flow program should have the pro-

perty that none of the individual PEs deadlock. We say that a system is

va id if

t It is more common to assume that a read executes immediately after its
corresponding write. We have chosen simultaneous reads and writes to be con-
sistent with VLSI technology and to simplify our discussion. All of our algorithms
can be easily modified to incorporate any fixed delay for message transmission.
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YiE[m]Yk2!0.:j>k (cp#c1)

when the system is executed in data-flow mode.

We remark that the model developed here differs from the well-

known vector addition system model [2] and the Petri Net model [3]. In

the VAS model, there is a specific execution mode: transition vectors are

applied only if all relevant coordinates are positive and when a transition

vector is applied, all coordinates are updated simultaneously. There is

also a specific cxecution mode for Petri Nets: transitions fire only if all

incident places contain a token and all token values are updated simul-

taneously. In contrast, IC systems may execute in either synchronous or

data-flow mode. In synchronous mode, operations execute as soon as

they are attempted. In data-flow mode, execution is conditional on the

appropriate values being available as in the VAS and Petri Net models.

Iowever, even in data-flow mode, our model differs from the other two

since operations execuie whenever they are enabled and the input and

output of an instruction are not necessarily simultaneous.

Variants

We would like to convert data-flow programs into strongly coordi-

nated, synchronous programs. For such algorithms to be useful, the

resulting program must perform the same computation as the original

program. To make this more precise, we define the notion of the set of

reads preceding a specific write. Writes, in data-flow mode, execute on

the first step in which they are attempted; the set of writes executed by

PE i in execution step k, WRITES(i,k), is

SI ^)CVdC*) A (k=1 v



-8-

Reads, in data-flow mode, may block temporarily and so a read executes

in the first step in which it was attempted and the corresponding data

was available; the set of reads that PE i executes in step k, READS(i.k ), is

i ri C Vji(C A) A t. X-'^ ( (0f.' = X') v
(k=1 v ,k jj C,-') A (tj., =j~ tX-,I v , wt TS (j.) ) )1

This means that a read in the current operation set executes on step k if

it is no longer pending after k (ti-jX - ) and one of three conditions is

met: it had been pending in the previous step (tk-;' = X-1 ); or it was first

attempted in step k (k =1 v ct'* c-) and there were unanswered writes

available (tk. = tjf1.X-1); or it was first attempted in step k and a

corresponding write also occured in step k (ucWRITES(jk)).

The 1-th write from PE i to PE j occurs on execution step k such that

k1 if wjcWRITES(i,p)
= xp where xp = 0 otherwise

p=I

and the set of reads that precede that -th write, PREADS(1,ij), is the

k-1
multi-set U READS(ip) . From this, we can define the relationship that

p=i

wc wish to hold between the original data-flow system and our con-

structed, synchronous system.

In terms of our abstraction, we will say the constructed system P

performs tl same comnpuLation as the original system P if three require-

mens are met. The first requirement is that a PE communicates with

the same set of PEs in both systems. Our second requirement is that

there is at least as much data available to a PE at the time of any write in

P as there was available in P. This second requirement will be true if the

set of reads that precede any write in P is a subset of the set of reads

that precede that same write in P'. Thus, we allow reads to occur "ear-

.1
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lier" and writes "later" in the constructed system than they did in the

original system; we assume that resulting, additional data is buffered

within the PE. To insure that the PEs remain finite, our third require-

ment is that the amount of this additional buffering is bounded. Putting

this together, we say the new system P is a variant of the original system

P if

(i) they have the same communication graphs

(ii) for each pair of PEs i and j and for all L-2O

PREADS(1 ,ij)gPREADS'(j, , )

and

(iii) there is some b such that for each pair of PEs i and j and for all

1_ 0

I PREADS'(1t,j) - PREADS (.i,j) I 25b

We present the following propositions without proof

Proposition 1: The relation "variant of" is transitive.

ProposiLion 2: If P = VI ,V2 ....Vm is a valid, loop program and n1 ,n 2... ,nm
are integers greater than 0, then

V,) .V,,n,....V:

is a variant of P.

The problem that we consider in the remainder of this paper can now

be formally stated:

Given a valid, data-flow loop program, construct a strongly coordi-

nated variant.
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The Coordination Problem

The coordination problem cannot be solved for all data-flow, loop pro-

grams. Consider, for example, the system in Figure 2. We define the

Processor A: BL ]J~ L LWBH

Processor B: ( L][rA][]1]LI)
Figure 2. An IC system that has no balanced variant

rate at which a PE uses a communication link to be the number of reads

or writes by that PE to the link in one cycle of its execution. The PEs in

the example communicate across the link from B to A at the same rate

but they communicate across thc link from A to B at different rates.

Intuitively, to strongly coordinate this system, thc cycles of A must

"speed up" relative to the cycles of B. Any speed up of A, however,

causes the communication rates across the link from A to B to differ.

This new mismatch can only be corrected by speeding up the cycles of B

relative to the cycles of A, returning us to the original problem. There is

110 strongly coordinated variant of the system in Figure 2. The problem

willi thv systein is not simply a matter' of unmatched data rates: the data

rates across the link of the system in Figure 3(a) are also unmatched but

the system has a strongly coordinated variant shown in Figure 3(b). The

distinction between systems that can be coordinated and systems that

cannot be coordinated is more subtle.

Defining ON(ij) to be the number of writes by PE i to PE j in Vj and

OFF(iQ) to be the number of reads by PE j from PE i in V, we say that a
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Process 1: (Ij Ed)*

Process 2: (D [I 1 )

3(a) An unbalanced system

Process 1: ( 2 ])*

Process 2: [LII 11 IiIDI II )*
3(b) A balanced variant of the system

in Figure 3(a)

Figure 3.

system is balanced if the following set of baanciig equations has a solu-

tion in which all z = 1

JON(ij).xt = OFF(ij)xjIiE[m]•

Neither the system in Figure 2 nor the system in Figure 3(a) are bal-

anced; the system in Figure 3(b) is balanced.

Lemma 1: There is at most one independent, non-trivial solution to a set

of balancing equations.

Proof: Form a spanning tree T of the undirected graph underlying the

communication graph for the given system. Each vertex of r

corresponds to a variable in the balancing equations and each edge of T

corresponds to one of the equations. IL is sufficient to show that each of

the (rn-i) corresponding equations are independent. Consider a variable

xZ corresponding to a leaf node of T. There is exactly one edge e to the

node corresponding to zt and so there is one equation represented by T

that uses zj. That equation must be independent of the other (m-2) equa-

tions represented by T-[e and by induction those equations must be

independent of each other. //
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A loop program is said to be balanc=ble if its balancing equations have a

solution in which all of the xt are integers greater than 0. The system in

Figure 2 is not balancable because there is no nontrivial solution to the

set of equations

2 .z = 3 .xB

The system in Figure 3(a) is balancable because z, = 1 and X2 = 2 is a solu-

tion to the equations. If a loop program Vl,V 2 ,...V.m is balancable then a

solution to the balancing equations x1 ,x 2. ...Xm can be found in O(n 3 ) time

and by Proposition 2, we can construct a balanced variant, V1 . V2. . . . . . Vm'

by setting each ' '= (p()")'.

We can now state the relationship between loop programs which can

be strongly coordinated and balancable programs.

Theorem 1: A valid, loop data-flow program can be strongly coordinated if
and only if it is balancable.

Proof:

(<=) This proof is given later as the proof of our Wave Algorithm.

(=>) Let P be a valid data-flow program and let P' be a strongly coordi-

nated variant of P. Because P' contains only loop programs, it is possible

to consider the c values for any PE i as integers modulo the length of V.

With this change in program counter values, P' is finite state since there

is no buffering of transmitted values. Therefore there is some state, q,

which appears inflnitely often in the executinn of P' and the execution

sequences appearing between any two consecutive occurences of q must

be the same. Consider an arbitrary PE ., and let 0 be the multi-set of

operations it executes in a single cycle and let E be the multi-set of

operations it executes as the system moves from one occurence of q to
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the next. Let 0" be n-fold union of 0.

Claim: E = 0" for some ntI.

Proof: Suppose not. Then let Y = E - 0' where r is the greatest

integer such that OCT E. Y is the set of "extra" operations that do not

form a complete cycle. Suppose there is somc write operation, wj, in

Y. Then Y must contain all of the read (*perations in 0 as well, since

otherwise the writes to PE j would "move up" relative to the reads by

FE i and eventually, for some k, we would have

PREADS (ki,j)cPREADS(k,i,)

Suppose there is a read, ry, in Y. Then Y must also contain all of the

write operations in 0 as well, since otherwise the reads would "move

up" relative to the writes by PE i and, for any bound 6 there would be

some k for which

fPREADS'(,j,i) - PREADS(k,j,i)I > 6.

Unless Y is empty, we have a contradiction. This completes the proof

of the claim.

So for each PE, E = 0" for some integer n. Choosing zt to be the

appropriate value of n for PE i, the Zt's form the desired solution to the

balancing equations. //

The class of programs that can be strongly coordinated is quite large

and it includes for example most of the systolic and pipelined algorithms.

As ainoLlier characterization, an IC sysLeit has tie fl'tiLe buffer properLV

if, when executed in data-flow mode, there is some integer b such that for

all i, j <[m] and kaO, tCPO_ . This is obviously a desirable characteristic

for any data-flow program and we show
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nicorem 2: Any valid, loop program with the finite buffer property can be
strongly coordinated.

Proof: If D is a valid, loop program with the finite buffer property, then,

as above, there must be some state which repeats infinitely often in the

execution sequences for D. Between every two consecutive occurences of

this state in a sequence, a PE must execute and integral number (greater

than 0 because the system is valid) of its cycles and data rates onto and

off of each conimunicaLion link must be equal. As a result, if we set Zj to

the number of cycles PE i executes during this sequence, then the zj's

form a solution to the balancing equations in which all xt>o. //

From this theorem and the example in Figure 3(a), we can conclude

Corollary: The set of valid, loop programs with the finite buffer property
is properly contained in the set of valid, loop programs that can be
strongly coordinated.

In the next section of this paper, we present our algorithms for con-

vcrLing data-flow programs into a strongly coordinated programs. The

algorilir is work only for balancable, valid loop programs. We have shown

how to dLeterinine ivhicther or ziot a program is balancable, now we show

how to determine whether or not it is valid.

Theorem 3: If a loop program is balancable, then there is an efficient
method for testing its validity.

IProof: Let S be a balancablc loop program and let B be its balanced vari-

ant constructed as above. The words generated by each PE have not been

changed in /, so S is valid if and only if / is valid. If B = V,V...., V, con-

strit. Ihe system 1) p(V,){} ".p(1'2)[".... p(Vm)fl*

Clafir: It is valid if and only if D is valid.
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Proof:

(->) Immediate since B is balanced.

(<=) Suppose that D is valid and B is not valid. Then there must be

some subset of the PEs, Pl,P2,.. pn, which become circularly blocked;

that is, for all iE[n], PE i blocks on a read from its successor, that is,

PE (i mad n)+1. Consider the first point in the execution sequence at

which this circular blocking occurs. Since B is balanced, the PEs

must all be on the same iteration of their cycles at this point and

within this iteration, the number of writes to PE i by its successor

must be one less than the number of reads by PE i from its succes-

sor. For the circular blocking to arise in B, it must be that for all

ic[n], the read which blocks in PE i must come before the write that

* releases its predecessor. But as a single PE executes in B or D, its

reads retain the same position relative to its writes so this must be

* true in D as well. If the blocked reads all precede the releasing

writes in D, however, then D would block on the same operations.

This is a contradiction since D is valid, completing the proof of the

claim.

D can be tested for validity by executing it until it reaches a step k for

which for all i, ck > Ip(Vt)I v VL>k(ck=c1) . Once such a stable state has

been reached, the validity of D can be tested by determining whether or

not all read and write operations have completed. If s is the number of

operations executed by PEs in a single cycle of S, D will execute for at

most s steps and so the test requires 0(s) time. //

Thc Conversion AlgoriLhms

In this section, we provide algorithms for automatically converting a

data-flow loop program into a strongly coordinated variant when possible.



- 16 -

For an arbitrary program P, we start by constructing a balanced variant

and testing it for validity. If P is balancable and valid, then its balanced

variant is coordinated with one of the two algorithms presented in this

section. Proposition 1 insures that the resulting, strongly coordinated

system is a variant of P.

Starting with a balanced, valid variant, we construct a strongly coor-

dinated variant with the following algorithm.

Algorithm 1: Wave algorithm to coordinate loop data-flow programs

Input: A valid, balanced, loop program, V1, V2..... V

Output: A strongly coordinated variant of the given program, V', V2', .... V'

Method.

1. Form expressions R 1,R 2. Rm from the given expressions where

14 =

2. Compute the data-flow execution sequences C*, ... , and

TO. 7'.. 7"' where k is the least integer for which ci > Ip(Vt)I for all

i.

3. For each i and for =1,2.... k, set V '(L) to

READS(iL)uw, IrtcREADS(j,1)J.

Theorem 4: The Wave Algorithm constructs a strongly coordinated variant

of any valid, balanced, loop program.

Proof: Since the original system is valid, we are assured of finding a value

for k in step 2. By the construction in step 3, writes can only occur in the

same step as their corresponding reads so the system is strongly coordi-

nated (the complete justification of this appears in a paper on testing
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coordination properties (43). It remains to show that the constructed

system is a variant of the original system. Since the set of reads executed

in any cycle of a PE is the same in both the given and constructed sys-

tems, requircments (i) and (iii) for a variant are trivially satisfied and,

for requirenent (ii), it is sufficient to consider just the first k execution

steps of the system. For L = 1,2,..., k, it is obvious that

ILADS(i,l) = A'EAWS'(il) for all i where READS is defined for the execution

sequences of the given system and READS' is defined for the execution

sequences of the constructed system. Suppose the second requirement

is violated by the 1-h write from PE i to 1E j which occurs on the r-th

step of the execution sequence for the constructed system and the s-th

step of the execution sequence for the given system where r<s. The write

in the constructed system occurs in the same step as its corresponding

read in both sysLems. Therefore in the original system the read that

corresponds to the write in step s must occur in step r (before s), which

is not possible by the definition of data-flow execution. /

If s is the total number of operations executed by PEs in a single cycle of

V1',V2', .... V,', then k<_s arid for all i, Jp(V')I_<s. The algorithm builds each

symbol of each V' and so it requires O(rns) time.

Figure 4 is an example of a valid, data-flow system and its strongly

coordinaLed variant constructed by this algorithm. The name of the algo-

rithm comes from the fact thai a single cycle's data passes through the

entire system before any PE starts its next cycle. For this example, the

result is nearly optimal because the data dependencies of the program do

not allow any of the PEs to get more than a few operations ahead of the

remaining Pls. lowever, if the original system is changed even slightly,

as in Figure b, the result is unsatisfactory. In this case, a better solution
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Processor A: (B E C-- [I*

Processor B: ( [ l i )*

Processor C: (A Btj L A )

P roce sso 
r D : ( W , )

Data flow program

Communication graph

Processor A:

Processor B: ] r LI III L*
Processor C: (rE LI F iLI FA EZ )*

Processor D: (c LI LILI LIL LI)*
Strongly coordinated variant constructed by

the Wave Algorithm

Figure 4.

is to allow Processors A and D to start a full cycle ahead of the others.

After they have completed their first cycles, Processor B can begin exe-

cuting its first cycle, while Processors A and D continued with their

second cycles. By the third cycle of A and D, all processors are executing

on every step. This more efficient solution, pictured in Figure 6, main-

tains the original three step cycle for the processors. The writes hav

been moved "forward" so that, for example, the write which occurs at the

beginning of the second cycle for Processor A is delayed from its first

cycle. The wy in the third cycle of Processor D is delayed from its second

cycle and the wc in the third cycle of Processor D is delayed from its first

cycle. The solution was constructed by the following coordination algo-

rithm fnr systems with acyclic communication graphs.
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Processor A: ([]
Processor B: ( r rl F)*
Processor C: ([rBjrjD )*

Processor D: ( WB Wc )*

Data flow program

Communication graph

Processor A: [10 0 L LI )

Processor B: (W LI I IL *

Processor C: (W D]IEIIL *

Processor D: (j ] [I])*
Strongly coordinated variant from Wave Algorithm

Figure 5.

Cycle 1 Cycle 2 Cycle 3

Processor A: ]]]1 D (F1 0 0 *
Processor B: AD 2'(4 A0C I )

Processor C: (Er Br D D)*
Processor D: L]F E L1 (1E131DD*

Strongly coordinated variant of IC system
from Figure 5.

Figure 6.
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Algorithm 2: Buffered Write Algorithm

Input: A valid, balanced, loop program, V1, V2.  V with an acyclic com-

munication graph.

Output: A strongly coordinated variant of the given system, V', Vg, .... V'.

Method:

I. Label the nodes of the communication graph with the length of the

longest path from a source node (a node with no predecessors) to the

node. Let LMAX be the depth of the graph.

2. Let n be the maximum length of any p(V) and form the expressions

R, R..... I?, where for all i

H1 = fl E()"-' P(v') )LM-XAY

where t is the label of the node for PEi and the expression E is p(Vj)

with all of the write operations removed (if writes are the only opera-

tions on some step, replace them with 11).

3. For each i [m], for each k=- to ip(Rt)I, set Vt'(k) to

Rt(k)u I w I rtcA'(k)l

Theorem 5: The Buffered Write Algorithm constructs a strongly coordi-
nated variant for any valid, balanced, loop program that has an acyclic
communication graph.

Proof: The fact that the resulting program is strongly coordinated follows

the construction in step 3 as above, so it remains to show that it is a vari-

ant of the given system. Conditions (i) and (iii) for variance are obvi-

ously met, leaving condition (ii). The execution sequence for the output

system can be divided into periods equal in length to the cycle size. Con-

sider a single PE which both reads and writes (if a PE does not both read

and write, it trivially satisfies the second condition). After the initial
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periods in which the PE just idles, it executes all of the reads from one

cycle during each period. Therefore, it is sufficient to show that if the

reads from a given iteration of the PE occur during period k, then the

writes for thiat iteration occur no sooner than period k+1. Beccause the

communication graph is acyclic, this is easily done by induction on the

periods noting that (1) the writes executed during any period are a sub-

set of the writes for a cycle and (2) the first read occurs at least one

period before the first write. /

The Ri will have a common length ni equal to LMAX times 1. In order to set

the value of each symbol in each one of the I'ts, all of the symbols in the

corresponding position of the Ris must be examined and so the algorithm

runs in O(rn2 n) time.

This algorithm works for all acyclic loop programs but it does not

always produce a good solution. Consider the system in Figure 7. The

Buffered Write construction creates a long initialization sequence (the

maximum length is the maximum cycle size times the number of PEs)

which means that many of the PEs idle for long times and that the length

of the PE code increases. The cxtra idling is probably not significant

since we can assume in most cases that the number of PEs will be much

smaller than the number of iterations required. The longer code, how-

ever, is a more serious problem since PEs will normally have a very lim.-

ited amount of memory. For this example, a better solution is the coordi-

nated program in Figure 8 in which each of the writes has simply been

moved "forward" two steps. Because the movement was within one cycle,

the PEs do not have to stagger their starts. The Buffered Write Algorithm

can be modified to produce this code by "preprocessing" the communica-

tion graph to eliminate links for which all writes appear before their
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Process A: ( B DIY2D E1]

Process B: r4 )

Process C: (

Process D: E] [jf

Process E: ~J[ 7 ])
Strongly coordinated variant constructed by

Buffered Write Algorithm

.: I I LL [][ 1[LYc 1  F] F,,,(j[ c D < rE,
L] [] Ai] (f 0 - ii- AIf"

LIDL i - Ld1C U [ iV

Figure 7.

corresponding reads.

As a final comment, notice that the compute operations have been

completely ignored in our analysis. To be realistic, we would have to

argue that our notion of variant preserves the computations of the sys-

tem. In fact, our definition does not preserve the computations of the

system since it does not preserve the order of compute steps or the
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Process A: ('lB 'C wD§ )*

Process B: (LJLJ rA WC )

Process C: (r J ir A I D )*

Process D: 0j~ 11r

Process E: rA rD )*

Figure 8. Strongly coordinated variant of the
system in Figure 7.

information available to a PE on a compute step. The definition of variant

would have to be strengthened. It should be noted, however, that our

algorithms could be easily adapted to this stronger definition since they

retain the position of all compute steps.

Conclusions

We have presented a simple model of parallel computation in which

both data-flow and synchronous execution modes can be harmoniously

expressed. Given certain programs defined using the data-flow execution

mode, we have shown aow to synthesize programs that are computation-

ally equivalent when executed in the synchronous mode. For the class of

programs under consideration, we characterized those for which this syn-

thesis is possible using the concept of "balancable". Potentially, our algo-

rithms can be used to shift the burden of specifying detailed timing

behaviors from the programmer to a compiler.
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